Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1041219730150010037
Journal of Sericultural and Entomological Science
1973 Volume.15 No. 1 p.37 ~ p.48
Studies on Raw Silk Cohesion for Promotion
Choe Byong-Hee

Kim Byong-Ho
Won Seong-Hee
Abstract
The purpose of this studies is to improve the cohesion of raw silk through various analyses on cocoon drying, cooking, reeling, re-reeling, and on the properties of water. Also we investigated the correlation between silk testing items which we have reached to the following results. 1. Drying of cocoon When cocoons were slowly dried with 100, the results of cohesion became much better. On the other hand, the results were considerably decreased in case the temperature with 115. 2. Cooking of cocoon In case of the cooking of cocoon, we found that the result of cohesion was best with incomplete cooking, that of the control was next, while in over cooking, the results were very low. Also the results of cohesion were much better when using the method of over cooking with sericin arrestive agent than that of incomplete cooking with sericin agglutinating agent. 3. Reeling of cocoon A) When the temperature of reeling bath was 25-45, the results of cohesion test were much better, but at the temperature below 25 or above 45, the results became worse. B) With out the process of croissieur, the results of cohesion were too bad, but in case of croissieur more than 1cm, cohesion became better rapidly. Further more, we understood that the results of cohesion were improving slightly with longer length of croissieur. C) When the velocity of reeling was increased, the results of cohesion also improved. The best results were shown when reeling velocity was 180-220 r.p.m. But when the velocity was increased more than 220 r.p.m., the results of cohesion got worse more or less. D) When the temperature of the drying pipe in reeling machine was raised, the results of cohesion also showed a tendency to improve. 4. Re-reeling A) We could net reach a conclusion as to have correlation between the number of dipping repeat in vacuum tank and the results of cohesion before re-reeling process. B) When we used Seracol 500 as an agglutination protective agent with l/1000 to l/2000 of water, the results of cohesion test were better. C) When we used Pearl-lite as an agglutination protective agent with 1/1000 to 1/2000 of water, the results of cohesion were considerably better. D) We gained tile best results when used Cohesion Improving Chemical, A-80, with 500-1500 times diluted. 1) Results of cohesion was improved when humidity was low or temperature was high in the rereeling machine. 5. Filature water A) The water pH near the isoelectric point of protein showed the best cohesion, but the farther water pH, the worser results were obtained. B) With the increasing of M-alkalinity in filature water, the results of cohesion were worse. Above all, we understood the tendency of the results of cohesion get worse when the M-alkalinity is increased above 200 ppm. C) By increasing the total hardness of the filature water, it improved the results of cohesion. Especially, when the total hardness was above 300ppm, the results were extremely high. 6. Effects combination of each results A) The result of effects combination in filature processes with the obtained best conditions was distinctively improved. But the results could not reach in mathematicaly double effect. When reelied under worse conditions, the results of cohesion test were too bad. There was "effect limit" for the promotion. B) Generally the results of cohesion were bad when the filature conditions(the temperature, pressure and the properties of water, etc) are processed as sericin loss to be high. On the other hand, the results were very good when lower sericin loss was controlled in filature conditions. C) When filature conditions such as reeling velocity and croissieur length provide pysical cohesion ability and when raw silk dry fast during reeling and re-reeling, we found the result of cohesion was better. 7. Correlation of silk testing items. A) A negative correlation exists between the results of cohesion test and cleanness defect. Another word, the result of cohesion test was found to be worse as cleanness defect increased. B) In cleanness, cohesion has negative correlation against the number of slugs, but we could not find any correlation against long loops, loose ends. C) Cohesion has negative correlation against average neatness and low neatness defect. The better the results of neatness respectively, the better the results of cohesion found. D) There is no correlation between tenacity and the results of cohesion test, but there was high positive correlation between the results of elongation and those of cohesion test. The more elongation, the better the results of cohesion was found.
KEYWORD
FullTexts / Linksout information
Listed journal information